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Abstract

The blue economy concept has been adapted as a strategy in setting development pro-
grammes and public policies in managing Indonesia’s marine resources. As a supporting
instrument, accurate field data is needed when compiling the ocean account. Meanwhile,
the support of qualified resources is needed during the field data collection process.
Research on mapping water areas using satellite technology and machine learning tech-
niques in producing water maps, especially in coastal areas. The approach is suitable for
arranging a physical asset account, which is a component of the ocean account framework.
So far, no research has implemented these developments to produce ocean physical asset
account. Therefore, this study will cover in arranging the account by utilising Sentinel-2
imagery and implementing Random Forest, Support Vector Machine, and Extreme Gradi-
ent Boosting (XGBoost) machine learning methods, which according to previous studies
are superior methods for mapping water areas. The modelling results show that there is
an extensive change in coral, seagrass, and mixed ecosystem types (a combination of coral,
seagrass, and macroalgae ecosystems) between 2020 and 2023.

Keywords: blue economy; ocean account; satellite imagery; machine learning
JEL Classification: Q01, Q05, Q56

DOI: 10.52813/jei.v13i3.563

Copyright ©2024 ISEI. This article is distributed under a Creative Commons Attribution-Share Alike 4.0 International

license. Indonesian Economic Journal is published by the Indonesian Economic Association

∗Corresponding Address: Politeknik Statistika STIS, Jalan Otto Iskandardinata No. 64C, RT. 1/RW.
4, Bidara Cina, Kecamatan Jatinegara, Jakarta Timur, Daerah Khusus Jakarta. Email: 222011628@stis.
ac.id.

Jurnal Ekonomi Indonesia • Volume 13 Number 3, 2024

222011628@stis.ac.id
222011628@stis.ac.id


Measuring ocean physical asset account using ...274

1. Introduction

As a country with vast territorial waters, Indonesia also possesses significant
marine wealth potential. For instance, in the economic sector, there are at least 11
marine potentials that can be developed from coastal and ocean areas, ranging
from capture fisheries and the fish processing industry to energy development
and non-conventional natural resources (Arianto, 2020). In this context, natural
resources are utilized as the primary capital in economic activities. However,
the supply of marine resources is limited, and destructive activities over time
can weaken this potential. This pattern subsequently has a feedback effect on
the marine and coastal economy. Therefore, to preserve the ecosystem while
simultaneously utilizing resources, a system aligned with the concept of the blue
economy is needed.

According to Indonesian Law Number 32 of 2014, Article 14, Paragraph 1, the
blue economy refers to an approach aimed at enhancing sustainable marine man-
agement, as well as the conservation of marine and coastal resources and their
ecosystems, to achieve economic growth based on principles such as commu-
nity involvement, resource efficiency, waste minimization, and multiple revenue
generation (Arianto, 2020). The blue economy concept also supports the Sustain-
able Development Goals (SDGs) set by the United Nations (UN), particularly
Goal 14: "Conserve and Sustainably Use the Oceans, Seas, and Marine Resources
for Sustainable Development" (Bappenas, 2020). One of the implementations of
the blue economy strategy is reflected in the development of marine accounts.
Marine accounts serve as a system that enables the measurement of both eco-
nomic achievements and environmental quality simultaneously (Ministry of
Marine Affairs and Fisheries (MMAF), 2022b). Fundamentally, the preparation of
environmental accounts follows the System of Environmental Economic Account-
ing (SEEA) framework, as agreed upon by the UN. The Indonesian government
has implemented SEEA guidelines into the Integrated Environmental and Eco-
nomic Accounting System (Sisnerling). As the central reference for Sisnerling,
Statistics Indonesia (BPS) collaborates with relevant ministries and institutions in
compiling environmental accounts, which include marine accounts.

There are seven types of accounts within the marine accounting framework:
marine asset accounts, marine-to-economy flow accounts, marine-to-environment
flow accounts, marine economic accounts, marine governance accounts, com-
bined presentation accounts, and marine wealth accounts (GOAP, 2021). Specifi-
cally, marine asset accounts record "environmental assets." The compilation of
marine asset accounts enables the measurement of marine ecosystems as wealth
assets. Ecosystem measurement is conducted through direct field observations.
However, significant support is required for data collection in marine accounting.
A pilot study report on the compilation of marine accounts in 2021 highlighted
that data availability and financial resources remain major challenges in imple-
menting this activity (Ministry of Marine Affairs and Fisheries (MMAF), 2022a).
Therefore, alternative data sources may serve as a solution to these issues.

Jurnal Ekonomi Indonesia • Volume 13 Number 3, 2024



Giani Jovita Jane, Etjih Tasriah, & Setia Pramana 275

On the other hand, the rapid advancement of technology enables the uti-
lization of big data as an alternative for field data collection. One type of big
data that has gained prominence is satellite imagery spatial data. Satellite im-
agery provides extensive information, including climate surface temperature,
atmospheric conditions, weather, and Earth observations. The ability of satellites
to capture Earth’s conditions makes it possible to map ecosystems beneath the
ocean surface. Several studies utilizing satellite imagery spatial data have suc-
cessfully classified coastal ecosystem areas. Furthermore, as research progresses,
underwater imaging has become a more widely used data source compared to
physical sampling (Misiuk & Brown, 2024). Sensors carried by satellites enable
highly efficient remote sensing for oceans and seabeds on a global scale. Among
low-resolution satellites, the use of Sentinel imagery has increased significantly
(Misiuk & Brown, 2024). In addition to being freely available, its spatial resolution
remains adequate. This has been demonstrated by previous studies that have
successfully classified benthic areas using Sentinel-2 satellite imagery, yielding
fairly accurate classification results (Lazuardi et al., 2021b; Wicaksono et al., 2020).
These studies classified coastal ecosystems, including benthic areas. Benthic refers
to anything located on the seafloor, whether living organisms or non-living el-
ements (NOAA, 2024). Common benthic ecosystems include seagrass forests,
seagrass beds, coral reefs, and soft-bottom environments on the continental shelf
(Burke et al., 2001).

Machine learning methods are commonly used in these classifications. Misiuk
& Brown (2024) state that supervised learning models, a type of machine learning
technique, have been widely used and have proven to yield reliable results for
benthic classification (Misiuk & Brown, 2024). A review of previous research
literature from 2018 to 2020 by Nguyen et al. (2021) on coral reef mapping
concluded that Support Vector Classification (SVC) often achieves high accuracy,
while Random Forest (RF) is highly efficient for remote sensing classification. The
review explains that both algorithms generally perform robustly, although they
do not always produce high metric values, with accuracy ranging from 70% to
just under 90% when using low- and medium-resolution imagery. Meanwhile, a
case study by Nemani et al. (2022) found that among the RF, SVC, and Extreme
Gradient Boosting (XGBoost) algorithms, the XGBoost algorithm achieved the
highest accuracy.

The advancement of research allows the implementation of these methods
in compiling physical asset accounts by mapping changes between two periods.
However, no research has specifically compiled physical asset accounts using
remote sensing technology for coastal areas. Therefore, based on the aforemen-
tioned concept, this study aims to compile physical asset accounts using satellite
imagery as an alternative data source, employing supervised learning modeling
methods such as the RF, SVC, and XGBoost algorithms, to model and map benthic
habitats.

This study is conducted in the research locus of Karimunjawa National Park
and the Thousand Islands, both of which contain rich coastal ecosystems. Their
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geographically favorable conditions make them popular coastal tourism destina-
tions (Ardianto, 2023; Balai Taman Nasional Karimunjawa, 2011). The mapped
research locus in the Thousand Islands includes five islands: Pari Island, Tidung
Island, Pramuka Island, Kelapa Island, and Harapan Island. These five islands
have recorded high numbers of tourists, according to data from the Thousand
Islands Tourism and Creative Economy Sub-Department. Moreover, these islands
all feature coastal tourism attractions.

2. Methodology

2.1. Benthic Habitat Mapping
Misiuk & Brown (2024) compiled a review of research on benthic habitat mapping
conducted over the past years. There has been a shift in approach from manual
benthic habitat mapping to empirical approaches, such as supervised modeling.
Supervised modeling began to be applied in habitat mapping literature around
2010, starting with Maximum Likelihood classification and k-Means clustering
methods. As research progressed, these methods were gradually replaced by
more advanced techniques, such as Random Forest (RF), Support Vector Machine
(SVM), and boosted regression trees, as these algorithms offered better perfor-
mance compared to the previous ones. Meanwhile, the use of satellite sensors
has been considered an efficient alternative data source for capturing the seafloor
on a global scale.

In the literature review by Nguyen et al. (2021) on coral reef mapping using
satellite imagery, low-resolution satellites such as Landsat and Sentinel have
been widely used. The open access to these satellite images has facilitated many
studies on coral reef mapping, although the image quality cannot be compared
to medium- and high-resolution satellite imagery. However, it has been observed
that the use of Sentinel satellite imagery has increased significantly over the years
in benthic habitat mapping research.

Several studies have demonstrated that satellite imagery can produce reason-
ably accurate habitat maps. According to previous research, the RF algorithm has
proven its performance. For example, a case study by Traganos & Reinartz (2018)
successfully classified seagrass with very high accuracy, reaching 96.4%, using
Sentinel-2 imagery. Meanwhile, another study by Wicaksono et al. (2019) applied
RF and achieved accuracy rates of 88.54% and 94.17% in classifying benthic
habitats into 14 and 4 classes, respectively, using WorldView-2, a high-resolution
satellite imagery. These findings suggest that the RF algorithm is highly capa-
ble of balancing the mapping results between low- and high-resolution satellite
imagery.

On the other hand, the SVM algorithm has also shown strong performance
in classifying coastal ecosystems in previous studies. Wicaksono et al. (2021)
demonstrated that an SVM model applied to Sentinel-2 imagery produced better
results than the RF model, achieving an accuracy of 73.23%. Similarly, a case
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study by Lazuardi et al. (2021a) successfully classified coral reefs and seagrass
beds using SVM with an accuracy of 73.14%, slightly outperforming the RF model
in the same study. Like the previous studies, this research also utilized Sentinel-2
imagery.

Despite the competitive advantages of RF and SVM, a study by Nemani et
al. (2022) revealed that XGBoost performed better than both SVM and RF in
classifying benthic assemblages, achieving an accuracy of 61.67%. This finding
highlights the importance of exploring different model choices in this study.

2.2. Physical Asset Balance
The ocean balance sheet is a structured compilation of consistent and compa-
rable information (maps, data, statistics, and indicators) regarding marine and
coastal environments, including social conditions and economic activities (GOAP,
2021; Ministry of Marine Affairs and Fisheries (MMAF), 2022b). Essentially, the
ocean balance sheet consists of a set of accounts structured within a conceptual
framework. This framework is developed in accordance with internationally
agreed-upon standards and frameworks.

In terms of marine governance, governments need to develop policies and
programs aimed at enhancing both social and economic development while en-
suring the protection of coastal and marine environments. Therefore, a holistic
and integrated marine-based development analysis is necessary, based on the evi-
dence provided in the ocean balance sheet. The ocean balance framework offers a
means to measure marine wealth, not only in financial terms but also in terms of
long-term sustainability, which is represented through the marine asset balance.
The Marine Asset Balance allows for recording the physical status and condition,
as well as the monetary value of assets ("natural capital") within coastal and
marine environments, including energy, minerals, and other biological resources
(such as biodiversity).

The approach to ecosystem asset valuation within the marine asset balance is
divided into two concepts: ecosystem extent measurement and ecosystem condi-
tion assessment (United Nations et al., 2014). The ecosystem extent measurement
concept forms the basis for the marine physical asset balance. This assessment
focuses on measuring land cover, expressed in terms of area and its changes
within each functional ecosystem unit/land cover type. Changes in land cover
are categorized into additions to stock and reductions to stock (United Nations et
al., 2014).

The potential of benthic habitat mapping in measuring ecosystem extent
enables the compilation of the physical asset balance, which is a component
of the ocean balance sheet. The physical asset balance essentially measures the
ecosystem extent of aquatic habitat land cover, expressed in area, and calculates
changes in coverage within each ecosystem class. However, no publications have
been found that implement coastal area mapping using satellite imagery with a
machine learning approach in the preparation of the physical asset balance.
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To achieve the research objectives, a series of research stages were conducted,
as described in the study by Jane et al. (2024). These stages include data collection,
data pre-processing, modeling using three different algorithms, model validation
using stratified cross-validation, and selecting the best model among all gener-
ated models. The modeling process was carried out using Random Forest (RF),
Support Vector Classification (SVC), and XGBoost algorithms.

Random Forest is a classification method that consists of an ensemble of
decision trees, where the majority class is chosen as the final class (Vujović, 2021).
The classification tree formula is expressed as follows.

ŷi =

K∑
k=1

fk(x,Tk) (1)

where ŷi is target of the i-th observation; K is number of trees; fk is function of
the k-th tree; T is training dataset; Tk is bootstrapped training dataset; and x is
selected future (input).

The classification tree is grown using the Classification and Regression Tree
(CART) method without pruning. When growing the model tree, nodes are split
by selecting the partition that reduces impurity.

SVM essentially searches for the most optimal separating hyperplane. The
following formula is used (Ng & Ma, 2023):

hw,b(x) = g(wTx + b) (2)

where w is the weight vector, defined as W = {w1,w2, . . . ,wn} and n is the number
of attributes, while b is considered as the bias. XGBoost is a method that combines
decision trees while minimizing the additive function and objective function.
XGBoost is equipped with an advanced split-searching algorithm, allowing the
model to find the best split in tree learning and efficiently process large-scale
and sparse input data. This learning method accommodates optimal prefetching
algorithms, data compression, and additional techniques to enhance computation
beyond the core processing.

Furthermore, to validate the modeling, two accuracy metrics F1-score and
Matthew’s Correlation Coefficient (MCC) are used. The best model is then se-
lected and applied to map benthic habitats using satellite imagery of the Kepu-
lauan Seribu region for two different periods (2020 and 2023) (Rainio et al., 2024;
Vujović, 2021). In general, the research framework is illustrated in the flowchart
in Figure 1.

The raster data resulting from the mapping is then analyzed for changes, with
the outcomes of this analysis used to construct a physical asset balance sheet,
which is one of the components of the balance sheet in the ocean accounting
framework, following the guidelines of the Technical Guidance on Ocean Accounting
for Sustainable Development (GOAP, 2021). According to these guidelines, the
physical asset balance sheet is broadly divided into components of additions
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Figure 1: Research Framework for Coastal Ecosystem Change Analysis
Source: Jane et al. (2024)

to stock and reductions in stock. Additions to stock consist of several types,
such as managed expansion, natural expansion, reclassifications, discoveries,
and upward reappraisals. Meanwhile, stock reductions can be detailed into
four categories: managed regression, natural regression, reclassifications, and
downward reappraisals.

2.3. Data and Variables
In this study, the predictor variables used include the red (B4), green (B3), blue
(B2), and near-infrared (B8) bands from Sentinel-2 Surface Reflectance (SR) im-
agery (Budhiman et al., 2012; Goodman et al., 2013; Wicaksono et al., 2021). These
values were obtained through the Google Earth Engine (GEE) platform, based on
a specified time frame and located in the Karimunjawa National Park and the
Thousand Islands. The benthic cover classification uses imagery from October
2021 (aligned with the reference data collection period) for training data, as well
as imagery from 2020 and 2023 to apply the benthic mapping model. Additionally,
these satellite images will be used to implement the trained model for the two
periods.

The second dataset used is the official data needed as the basis for labeling.
Benthic habitat reference data was obtained from the National Research and Inno-
vation Agency (BRIN). The cover data was gathered from field observations con-
ducted in October 2021 at each available observation station within the research
locus. This shapefile data consists of classes such as coral, seagrass, macroalgae,
sand, and a mixed class (a combination of coral, seagrass, and macroalgae) in
shallow water areas. The official benthic cover data was then used to delimit the
benthic habitat areas, with shallow water areas being defined as those close to
shore, based on expert assessments who produced this data. This was done to
ensure the classification model focuses solely on the changes in benthic patterns
of shallow waters, due to the limitations of electromagnetic signal depth (Misiuk
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& Brown, 2024). The data and variables are shown in Table 1.

Table 1: Data and variable that are used

Data Variable Unit (metric) Period
Sentinel-2 Level 2A Sur-
face Reflectance (GEE)

Pita B2, B3, B4, B8 Pixels (10 m) August 2020 and De-
cember 2023 (Kepulauan
Seribu)
October 2021 (Taman
Nasional Karimunjawa)

Benthos Habitat Shape-
file (BRIN)

Benthos Habitat Classes
(coral class, seagrass
class, macroalgae class,
sand class, and mixed
class)

- 2021

Source: Processed

3. Result and Analysis

Based on the model built in the reference by Jane et al. (2024), here are the vali-
dation results of the best model, the RF model with 100 n_estimators parameter.
The RF model in this case outperformed with an overall F1-score metric of 0.773,
while XGBoost excelled in the overall MCC metric with a value of 0.784. Both
models performed similarly well. However, the RF model demonstrated more
stability due to its smaller standard deviation, making it the chosen model for
mapping coastal areas. The superior performance of both models aligns with
previous studies that highlighted the advantages of RF and XGBoost algorithms
over others (Nemani et al., 2022; Traganos & Reinartz, 2018; Wicaksono et al.,
2019).

The F1 score is an evaluation metric that combines precision and recall. Pre-
cision measures the percentage of observations classified as positive from all
observations classified as positive, while recall indicates the percentage of obser-
vations classified as positive from all actual positive observations. Meanwhile,
the MCC score measures the correlation between predicted class results and the
actual class. Both metrics range from -1 to 1. The closer the value is to 1, the better
the prediction, and the closer it is to -1, the worse the prediction.

Next, benthic habitat mapping was carried out on five islands in the Thousand
Islands across two periods, as shown in Figure 2. The results of this mapping
were then analyzed for changes, and a physical asset balance sheet was prepared
assuming that all changes occurred naturally.

The mapping results were then analyzed for changes before being compiled
into a balance sheet, identifying whether an ecosystem experienced an increase
or decrease. These changes are presented in Table 3.

Based on the Table 2, several conclusions can be drawn. In both periods, there
was a shift in the dominant class in the coastal areas. The sand ecosystem was
the class with the largest area in 2020, while the seagrass ecosystem dominated
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Figure 2: Habitat Classification of Kepulauan Seribu in 2020 and 2023
Source: Processed
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Table 2: Changes in the Benthic Habitat Ecosystem of Kepulauan Seribu in 2020 and
2023

Area 2023 (ha) TOTALArea 2020 (ha) Mixed Coral Reef Seagrass Macroalgae Sand
Mixed 14,84 20,3 4,91 6,99 17,12 64,16
Coral Reef 5,89 240,69 0,23 2,87 6,07 255,75
Seagrass 28,07 2,77 295,94 183,33 46,39 556,5
Macroalgae 18,01 13,55 37,05 45,5 9,45 123,56
Sand 14,52 19,29 329,45 36,01 337,44 736,71
TOTAL 81,33 296,6 667,58 274,7 416,47 1736,66

Source: Processed

the coastal areas in 2023. Meanwhile, the mixed ecosystem remained consistent
as the class with the smallest area in both periods. Another observation is that
there was an increase in the area of all ecosystem classes except for the sand class.
However, field verification is still needed to ensure the accuracy of the model’s
predictions. After observing the changes, the physical asset balance was prepared
with the assumption that all changes occurred naturally. This account was only
created for the ecosystem types that are inline with the government’s priority,
namely coral reefs and seagrass ecosystems. The physical asset balance is shown
in Table 3.

Table 3: Physical Asset Balance of Five Islands in Kepulauan Seribu in 2020 and 2023

Ecosystem Aset
Seagrass Coral Mixed

Opening Stock 556,5 255,7 64,2
+ Additions to Stock
Managed expansion
Natural expansion 371,6 55,9 66,5
Reclassifications
Discoveries
Reappraisals (+)
TOTAL additions to stock 371,6 55,9 66,5
- Reductions to Stock
Managed regression
Natural regression 260,5 15,1 49,3
Reappraisals (-)
TOTAL reductions to stock 260,5 15,1 49,3
= Closing Stock 667,6 296,6 81,3
Units of Measurement Area (ha)

Source: Processed

Based on the balance sheet, it can be concluded that each ecosystem type
experienced an increase in area. In comparison, the seagrass ecosystem experi-
enced the largest expansion, with an area increase of 111.1 ha, followed by the
coral reef ecosystem (40.9 ha) and the mixed ecosystem (17.2 ha). However, when
compared by percentage change, the mixed ecosystem had the largest percent-
age change relative to the initial area, at 26.76%. The second-largest percentage
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change occurred in the seagrass ecosystem, at 19.96%. These changes align with
the findings of Qiu et al. (2017), which state that seagrass areas exhibit seasonal
variation due to certain factors throughout the year. Therefore, when compared
to the initial area, the mixed and seagrass ecosystems experienced the largest
changes among the three ecosystems.

In addition, the Ministry of Maritime Affairs and Fisheries (KKP) imple-
mented marine and fisheries development programs between the two periods,
which could support the preservation of these three ecosystems. In 2020, the KKP
implemented a marine spatial management program that protected and utilized
conservation areas and marine biodiversity, as well as spatial planning and man-
agement support programs. The program also included fisheries management
to regulate fishing gear and licensing, marine and fisheries resources surveil-
lance, and research programs for marine and fisheries resources that included
outreach and research activities (Kementerian Kelautan dan Perikanan, 2020).
From 2021 to 2023, the KKP continued its marine and fisheries management
program, which included marine resources surveillance and spatial planning
activities, environmental quality programs focusing on conservation areas and
biodiversity, vocational education and training programs for marine resources
surveillance officers, and research and innovation programs in marine and fish-
eries science and technology (JDIH Marves, 2023; Kementerian Kelautan dan
Perikanan, 2022,2023,2024).

4. Conclusion and Implication

Based on the results and discussion, the conclusion that can be drawn is that
satellite imagery can be used in the preparation of physical asset accounts. By
using machine learning methods, coastal ecosystem type classification allows for
the determination of the area of each ecosystem type. The area of these ecosystems
can then be analyzed for changes and used to prepare physical asset accounts
based on the analysis. According to the results of the asset account, there are
differences in the physical assets of coastal ecosystems in the Kepulauan Seribu
region between the two periods, 2020 and 2023, particularly in the mixed and
seagrass ecosystems.

Meanwhile, there are several recommendations that can be given based on
this study. For the government, there are already routine activities for classifying
coastal ecosystems using satellite imagery, but no efforts have been made to
prepare physical asset accounts from these classifications. Therefore, this idea
could serve as a solution in case there are obstacles in the data collection process
for preparing physical asset accounts. For future research, there are several
suggestions based on the limitations of this study. These limitations include the
selection of imagery in benthic habitat classification, which prioritizes image
quality over other external factors, such as tidal periods. Additionally, this study
did not consider the seasonal variations in seagrass, which should be taken
into account in future benthic habitat classification research. Furthermore, this
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research did not utilize other supporting data, such as depth data, and therefore,
it is recommended to include complementary data to improve the accuracy of
the modeling.

This research was not accompanied by field verification. Therefore, for future
studies, field verification is necessary to validate the classification results.
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